
Kubernetes reliability and an avenue
to reliable cloud infrastructures

Tianyin Xu
University of Illinois Urbana-Champaign

tyxu@illinois.edu

IEEE Emerging Technology Reliability Roundtable
Lisbon, Portugal, May 2024

$ whoami

1

• Assistant Professor of Computer Science, UIUC (2018 – now)
• Research Interests: Software and Systems Reliability

• Visiting Scientist, Facebook Core Systems (2017–2018)
• Dealing with datacenter-level disasters

• PhD from UC San Diego (2011 – 2017)
• Wrote a thesis about defending against configuration errors

Emerging cloud computing paradigms

Real-time graph of microservice dependencies at amazon.com in 2008.

• Microservice
• Serverless
• Sky computing
• Hybrid cloud

2

Real-time graph of microservice dependencies at amazon.com in 2008.

From the Death Star to the Galaxy

AWS Re:Invent 2023.
3

Observations

• Individual services become simpler and more fine-grained
• Opportunities for testing, analysis, and verification

• Cross-service interactions become more complex and error-prone
• New tools and practices are needed

• Traditional reliability tools are insufficient
• Many only reason about control- and data-flow within a program

4

Testing and verification of cloud systems

• Testing and model checking existing cloud systems
• Finding and fixing bugs in systems code

• Specifying systems (e.g., using TLA+)

• Building formally verified systems with correctness guarantees

• Proved safety and liveness

5

Kubernetes as a running (microservice) system

…

Scheduler

...

StatefulSet
Controller

… …

Deployment
Controller GC Controller

ZooKeeper
Controller

RabbitMQ
Controller

FluentBit
Controller

Cassandra
Controller

API Server API Server API Server API Server

etcd etcd etcd

6

…

…

…

…

Kubernetes as a running (microservice) system

…

Scheduler

...

StatefulSet
Controller

… …

Deployment
Controller GC Controller

ZooKeeper
Controller

RabbitMQ
Controller

FluentBit
Controller

Cassandra
Controller

API Server API Server API Server API Server

etcd etcd etcd

7

…

…

…

…

Kubernetes as a running (microservice) system

…

Scheduler

...

StatefulSet
Controller

… …

Deployment
Controller GC Controller

ZooKeeper
Controller

RabbitMQ
Controller

FluentBit
Controller

Cassandra
Controller

API Server API Server API Server API Server

etcd etcd etcd

8

…

…

…

…

Kubernetes as a running (microservice) system

…

Scheduler

...

StatefulSet
Controller

… …

Deployment
Controller GC Controller

ZooKeeper
Controller

RabbitMQ
Controller

FluentBit
Controller

Cassandra
Controller

API Server API Server API Server API Server

etcd etcd etcd

9

…

…

…

…

Cassandra
Controller

Challenge 1: Faults, delays, and asynchrony

Container

Volume

Current

Delete(container)
...
Delete(volume)
...

Desired

10

Re
co

nc
ili

at
io

n

Volume

• Controller malfunction
• Resource leak
• Security issue

Crash
and

Restart Never
executed

Current
Container

Desired

Cassandra
Controller

Delete(container)
...
Delete(volume)
...

11

Challenge 1: Faults, delays, and asynchrony

Volume

• Controller malfunction
• Resource leak
• Security issue

Crash
and

Restart Never
executed

Current
Container

Desired

Cassandra
Controller

Delete(container)
...
Delete(volume)
...

12

Challenge 1: Faults, delays, and asynchrony

Non-crashing symptom Sophisticated
triggering
condition

Different implementations
and diverse functionality

• Key Idea: Perturbing the controller’s interaction with the system state
• Usability: Testing unmodified controllers
• Reproducibility: Reproducing detected bugs reliably

• Detected 46 serious bugs in 10 popular Kubernetes controllers
• Severe consequences: System outage, data loss, security issues, etc.
• 35 confirmed and 22 fixed

• Available: https://github.com/sieve-project/sieve

Sieve for automatic reliability testing

13

https://github.com/sieve-project/sieve

Reference run Perturbed run

Common,
transient

faults

The interaction with the system state
can be affected by many factors

Desired state

Initial state
System state: Objects in

Every object
creation/update/deletion

advances the state

Perturbing the controller’s view of system states

14

Reference run Perturbed run

Common,
transient

faults

Desired state

Initial state
System state: Objects in

Differential oracles:
Detecting liveness and safety

violations without knowing the
semantic of the system

Flagging buggy behavior with differential oracles

15

Reference run Perturbed run

Common,
transient

faults

Desired state

Initial state
System state: Objects in

Liveness Property
A controller should eventually

achieve the desired state

Compare the end states

Flagging buggy behavior with differential oracles

16

Reference run Perturbed run

Common,
transient

faults

Desired state

Initial state
System state: Objects in

Safety Property
A controller should never delete

user data unless requested

Compare the state updates
(e.g., # volume deletions)

Flagging buggy behavior with differential oracles

17

• Employ three perturbation patterns
• Intermediate-state pattern
• Stale-state pattern
• Unobserved-state pattern

• Exhaustively test all bug-triggering perturbations
• Systematically find all the targeted bugs
• Inject faults with different timings

• Prune out ineffective perturbations to be efficient
• Not every perturbation leads to bugs

Exhaustive perturbation with different patterns

18

Challenge 2: Complex interface and configuration

19

• Hundreds to thousands of configuration parameters
• “cloud feels more about configuration management than software engineering”

• High velocity (thousands) of configuration changes per day
• outpacing source-code changes

• Fundamentally difficult to test all possible configurations
• classic combinatorial complexity
• Misconfigurations (the error space) are often not considered

Challenge 2: Complex interface and configuration

ControllerManaged system

• Controller interacts the managed applications
• Invoke application APIs (e.g., updating membership)
• Have to meet application operation semantics

• Must reason about end-to-end correctness
• Application availability is more important than the controller’s.

20

2

replicas:
 2 # <- 3

replicas:
 3 # <- 2

C
ur

re
nt

 S
ta

te

Desired State

A bug detected by Acto in the Pravega’s ZooKeeper operator

Fail to update ZK membership

Challenge 2: Complex interface and configuration

Ctest: testing configuration changes with code

• Testing configuration changes together with code affected by the changes
• can detect sophisticated misconfigurations (e.g., silent errors)
• can detect dormant bugs triggered by valid configuration changes

• Configuration tests can be directly generated from existing tests
• Mature software projects have abundant test suites
• Reuse well engineered test logic and oracles

• Detected 96.9% of real-world failure-inducing configuration changes

• Available: https://github.com/xlab-uiuc/openctest
• Available: https://github.com/xlab-uiuc/ctest4j 22

https://github.com/xlab-uiuc/openctest
https://github.com/xlab-uiuc/ctest4j

Acto: a push-button E2E testing tool

• Testing the controller together with the managed applications
• complement unit tests

• Checking end-to-end correctness properties
• always reconciling the managed application to its desired states
• always recovering the application from undesired or error states
• always being resilient to operation errors

• Detected 81 serious bugs in 12 popular Kubernetes controllers
• 62 confirmed and 43 fixed

• Available: https://github.com/xlab-uiuc/acto
23

https://github.com/xlab-uiuc/acto

24

Can we build formally verified controllers
that are practical?

Anvil: building formally verified controllers

• A framework to help build practical and verified controllers

• Verified: the controller implementation is formally verified

• Practical: the verified controller can be deployed in any Kubernetes clusters

• We have built three Kubernetes controllers using Anvil

• Controllers for managing ZooKeeper, RabbitMQ, and FluentBit

• Feature parity and competitive performance

25

Eventually Stable Reconciliation (ESR)

• A formal correctness specification for controllers
• Generally applicable to diverse controllers
• Powerful enough to preclude a broad range of bugs

• Formula:

• “If at some point the desired state stops changing, then the system state
will eventually match the desired state, and always match it from then”

26

27

ESR Specification

ESR Proof

Also supports other
properties: e.g., safety

Written in Rust
Deployed in Kubernetes

Controller
Implementation

Checked by the SMT solver

Anvil (backed by Verus)

Developing controllers with Anvil

28

ESR Specification

ESR Proof

Controller
Implementation

Developing controllers with Anvil

Environment
Model

Reusable
Lemmas

TLA Embedding

Anvil (backed by Verus)

Pass Fail

Towards truly reliable cloud infrastructures

…

Scheduler

...

StatefulSet
Controller

… …

Deployment
Controller GC Controller

ZooKeeper
Controller

RabbitMQ
Controller

FluentBit
Controller

Cassandra
Controller

API Server API Server API Server API Server

etcd etcd etcd

29

…

…

…

…

Towards truly reliable cloud infrastructures

…

Scheduler

...

StatefulSet
Controller

… …

Deployment
Controller GC Controller

ZooKeeper
Controller

RabbitMQ
Controller

FluentBit
Controller

Cassandra
Controller

API Server API Server API Server API Server

etcd etcd etcd

30

…

…

…

…

Towards truly reliable cloud infrastructures

…

Scheduler

...

StatefulSet
Controller

… …

Deployment
Controller GC Controller

ZooKeeper
Controller

RabbitMQ
Controller

FluentBit
Controller

Cassandra
Controller

API Server API Server API Server API Server

etcd etcd etcd

31

…

…

…

…

Towards truly reliable cloud infrastructures

…

Scheduler

...

StatefulSet
Controller

… …

Deployment
Controller GC Controller

ZooKeeper
Controller

RabbitMQ
Controller

FluentBit
Controller

Cassandra
Controller

API Server API Server API Server API Server

etcd etcd etcd

32

…

…

…

…

Reference

[1] Automatic Reliability Testing for Cluster Management Controllers,
 OSDI, 2022. [paper] [project]
[2] Reasoning about modern datacenter infrastructures using partial
 histories, HotOS, 2023 [paper]
[3] Acto: Automatic End-to-End Testing for Operation Correctness of
 Cloud System Management, SOSP, 2023. [paper] [project]
[4] Anvil: Verifying Liveness of Cluster Management Controllers, OSDI,
 2024. [paper] [project]
[5] Fail through the Cracks: Cross-System Interaction Failures in Modern
 Cloud Systems, EuroSys, 2023. [paper]

33

https://tianyin.github.io/pub/sieve.pdf
https://github.com/sieve-project/sieve
https://tianyin.github.io/pub/partial_history.pdf
https://tianyin.github.io/pub/acto.pdf
https://github.com/xlab-uiuc/acto
https://tianyin.github.io/pub/anvil.pdf
https://github.com/vmware-research/verifiable-controllers
https://tianyin.github.io/pub/csi-failures.pdf

Reference

[6] Testing Configuration Changes in Context to Prevent Production
 Failures, OSDI, 2020. [paper] [project]
[7] Push-Button Reliability Testing for Cloud-Backed Applications with
 Rainmaker, NSDI, 2022 [paper]
[8] Early Detection of Configuration Errors to Reduce Failure Damage,
 2016. [paper]
[9] Do Not Blame Users for Misconfigurations, SOSP, 2013. [paper]

34

https://tianyin.github.io/pub/ctest.pdf
https://github.com/xlab-uiuc/openctest
https://tianyin.github.io/pub/rainmaker.pdf
https://tianyin.github.io/pub/pcheck.pdf
https://tianyin.github.io/pub/spex.pdf

