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• Assistant Professor of Computer Science, UIUC (2018 – now)
• Research Interests: Software and Systems Reliability

• Visiting Scientist, Facebook Core Systems (2017–2018)
• Dealing with datacenter-level disasters

• PhD from UC San Diego (2011 – 2017)
• Wrote a thesis about defending against configuration errors



Emerging cloud computing paradigms

Real-time graph of microservice dependencies at amazon.com in 2008.

• Microservice
• Serverless
• Sky computing
• Hybrid cloud
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Real-time graph of microservice dependencies at amazon.com in 2008.

From the Death Star to the Galaxy

AWS Re:Invent 2023.
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Observations

• Individual services become simpler and more fine-grained
• Opportunities for testing, analysis, and verification

• Cross-service interactions become more complex and error-prone
• New tools and practices are needed

• Traditional reliability tools are insufficient
• Many only reason about control- and data-flow within a program 
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Testing and verification of cloud systems

• Testing and model checking existing cloud systems
• Finding and fixing bugs in systems code

• Specifying systems (e.g., using TLA+)

• Building formally verified systems with correctness guarantees
 

• Proved safety and liveness
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Kubernetes as a running (microservice) system
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Cassandra
Controller

Challenge 1: Faults, delays, and asynchrony 

Container

Volume

Current

Delete(container)
...
Delete(volume)
...

Desired

10

Re
co

nc
ili

at
io

n



Volume

• Controller malfunction
• Resource leak
• Security issue

Crash
and

Restart Never 
executed

Current
Container

Desired

Cassandra
Controller

Delete(container)
...
Delete(volume)
...
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Challenge 1: Faults, delays, and asynchrony 

Non-crashing symptom Sophisticated 
triggering 
condition

Different implementations
and diverse functionality



• Key Idea: Perturbing the controller’s interaction with the system state
• Usability: Testing unmodified controllers
• Reproducibility: Reproducing detected bugs reliably

• Detected 46 serious bugs in 10 popular Kubernetes controllers
• Severe consequences: System outage, data loss, security issues, etc.
• 35 confirmed and 22 fixed

• Available: https://github.com/sieve-project/sieve

Sieve for automatic reliability testing 
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Reference run Perturbed run

Common,
transient 

faults

The interaction with the system state 
can be affected by many factors

Desired state

Initial state
System state: Objects in

Every object 
creation/update/deletion 

advances the state

Perturbing the controller’s view of system states
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Reference run Perturbed run

Common,
transient 

faults

Desired state

Initial state
System state: Objects in

Differential oracles:
Detecting liveness and safety 

violations without knowing the 
semantic of the system

Flagging buggy behavior with differential oracles
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Reference run Perturbed run

Common,
transient 

faults

Desired state

Initial state
System state: Objects in

Liveness Property
A controller should eventually 

achieve the desired state

Compare the end states

Flagging buggy behavior with differential oracles
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Reference run Perturbed run

Common,
transient 

faults

Desired state

Initial state
System state: Objects in

Safety Property
A controller should never delete

user data unless requested

Compare the state updates
(e.g., # volume deletions)

Flagging buggy behavior with differential oracles
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• Employ three perturbation patterns
• Intermediate-state pattern
• Stale-state pattern
• Unobserved-state pattern

• Exhaustively test all bug-triggering perturbations
• Systematically find all the targeted bugs
• Inject faults with different timings

• Prune out ineffective perturbations to be efficient
• Not every perturbation leads to bugs

Exhaustive perturbation with different patterns
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Challenge 2: Complex interface and configuration
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• Hundreds to thousands of configuration parameters
• “cloud feels more about configuration management than software engineering”

• High velocity (thousands) of configuration changes per day
• outpacing source-code changes

• Fundamentally difficult to test all possible configurations
• classic combinatorial complexity
• Misconfigurations (the error space) are often not considered 



Challenge 2: Complex interface and configuration

ControllerManaged system

• Controller interacts the managed applications
• Invoke application APIs (e.g., updating membership)
• Have to meet application operation semantics

• Must reason about end-to-end correctness
• Application availability is more important than the controller’s.
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Desired State

A bug detected by Acto in the Pravega’s ZooKeeper operator

Fail to update ZK membership

Challenge 2: Complex interface and configuration



Ctest: testing configuration changes with code

• Testing configuration changes together with code affected by the changes
• can detect sophisticated misconfigurations (e.g., silent errors)
• can detect dormant bugs triggered by valid configuration changes

• Configuration tests can be directly generated from existing tests
• Mature software projects have abundant test suites
• Reuse well engineered test logic and oracles

• Detected 96.9% of real-world failure-inducing configuration changes

• Available: https://github.com/xlab-uiuc/openctest
• Available: https://github.com/xlab-uiuc/ctest4j 22
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Acto: a push-button E2E testing tool 

• Testing the controller together with the managed applications
• complement unit tests

• Checking end-to-end correctness properties
• always reconciling the managed application to its desired states
• always recovering the application from undesired or error states
• always being resilient to operation errors

• Detected 81 serious bugs in 12 popular Kubernetes controllers
• 62 confirmed and 43 fixed

• Available: https://github.com/xlab-uiuc/acto
23

https://github.com/xlab-uiuc/acto
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Can we build formally verified controllers
that are practical?



Anvil: building formally verified controllers

• A framework to help build practical and verified controllers

• Verified: the controller implementation is formally verified

• Practical: the verified controller can be deployed in any Kubernetes clusters

• We have built three Kubernetes controllers using Anvil

• Controllers for managing ZooKeeper, RabbitMQ, and FluentBit

• Feature parity and competitive performance
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Eventually Stable Reconciliation (ESR)

• A formal correctness specification for controllers
• Generally applicable to diverse controllers
• Powerful enough to preclude a broad range of bugs

• Formula:

• “If at some point the desired state stops changing, then the system state 
will eventually match the desired state, and always match it from then”
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ESR Specification

ESR Proof

Also supports other 
properties: e.g., safety

Written in Rust
Deployed in Kubernetes

Controller
Implementation

Checked by the SMT solver

Anvil (backed by Verus)

Developing controllers with Anvil
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ESR Specification

ESR Proof

Controller
Implementation

Developing controllers with Anvil

Environment 
Model

Reusable 
Lemmas

TLA Embedding

Anvil (backed by Verus)

Pass Fail



Towards truly reliable cloud infrastructures
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