Des

IEEE ETR Round Tz

il N, Its hallenS

Name: Chenggiang Huang (Vincent)
Date: 2024.05.21 ;

V2 HUAWEI

Contents

Introduction

Design for Dependability

Model Verification, Validation, and Runtime Assurance
Existing Challenges

- R

1. Introduction X Reliability Technology Lab

2012 Lab
Reliability, Availability, Safety

Trustworthy Theory
Engineering and Technology
Lab

Smart Cars Reliability and Functional Safety

Terminal Devices Reliability (Harmony / Android)

A 4

ICT Reliability (5G/Cloud Computing/ Kunpeng)

Al Reliability System Reliability

\ 4

Hardware Reliability Software Reliability

Reliability Technology Lab

RAMS Technology Lab }

1. Introduction ¥ The scope

N Reliability Availability Maintainability
<
Y Safety
Security
Privacy Ethics Fairness

C¥ fortiss . Trustworthy Autonomous/Cognitive Systems

Ayriomisni|

2. Design for Dependability o the Methodology

Design for dependability — State of the
art and trends ¢ Pubdate:5 February 2024

Hezhen Liu ? =, Chenggiaong Huang ® 2, &, Ke Sun %, Jiacheng Yin 9, Xigoyu Wu °,

Jin Wang %, Qunli Zhang %, Yang Zheng °, Vivek Nigam B Feng Liu P, oseph Sifakis ©

K oo JJ—..,-W—-__\ I. Functionality Il. System Correctness 11l System Dependability
&Reqmrement;) (Nominal Conditions) (Nominal Conditions) (Out-of-Nominal Conditions)
T
"""" 2 e . . .
z : ' The third block emphasize the importance
SW/HW Design ; of de'pendqbility in system des?gn with thg
: consideration of out -of-nominal conditions
N T ; : troughout the system lifecycle.
7~ Application ™ System Des :
\-‘ W == ystem Design :
T Cawperen) l) Risk analysis, mitigation and assessment
—— — - .
= @ sy ﬁen e are three key techniques to promote
Verification/Validation ___]__,--/ /" —*|__System Design system dependability.
System Correctness mX 6.e-p—;n::lggt‘e‘
— Analysis \\%lﬁm Model
VDesign Space Exploration \ Risk Analysis/
KMitigation/Assessmentj/
e

Liu, H., Huang, C., Sun, K, Yin, J., Wu, X., Wang, J., ... & Sifakis, J. (2024). Design for dependabilityd State of the
art and trends. Journal of Systems and Software, 111989.

2. Design for Dependability ¢ the Models

Recorded in docs,
ppts, excels, etc.

1
|
|
|

System Model
(qualitative)

« N\
/ \
/ \\
/
/ / \
/ \
/ \
/ \
! Data 7 o _ \
[Target]‘ confirmatioft Digitaljzation | Model Analysis
’, A How to digitally express and analyze models?
/
/
N /
\ //
\‘ A\ 4 1/
Digital Model
(quantitative) -
Model Validation and Verification N = -
A Does the computational model reflect reality correctly? o ~—— _ _ _ —— -

graph db, xml, code,

~—_ / -y Recorded in json,
|
' etc.

3.1 Design for Dependability and

Concepts and Requirements
Formalized User requirement

Administrator

A Whether the requirement is accurate
A Whether the requirement is complete?

A Whether the alg
satisfies the
requirement?

A

the Models for Verification Purpose

System Workflow

iinput A,B,Cl B
|

A Whether the arch
satisfies the
requirement?

Whether the code
matches the system
arch and workflow @

System Arch
Region
DC 1 DC 2 A
NRF 1 > NRF 2 P
A
r \ 4
NF 1 NF 2

A Whether the arch is reliable?

A Whether the workflow/algorithm is correct?

Code Implementation

def get_all_headings(doc_path):
document = Document(doc_path)

headings = {}
for i in range(9):
headings[f"Heading {i+1}"] = []

for paragraph in document.paragraphs:
style_name = paragraph.style.name
if style_name.startswith("Heading"):
level = int(style_name.replace("Heading ", ""))
headings|style_name].append(paragraph.text)

return headings

A Whether the code is bug free

[Data storage] Discovery and verification of the scenario where messages

are lost

Reliability modeling based on sequence diagrams and automatic generation of BIP code, accurately identifying the root cause

of faults and modifying

the design.

-

e

==

-

[
—

-H._‘,.

Building a Sequence\%iagram Model

XXXXXXXXX XXX XXXXXXXX

T+ XOKXXXXXXXXX

Data type # |dentifier Operator
bool halflife =
int IDMaster =

Value

Status parameter definition

Fauit 2

[-
 Faltinjecion object:

frror 1D el 2

* Fault njecion point: betwsen

//
A\
M=
R
| T e
| ==
I |
i
| i =

[System Arch] | [SD + Table]
|
|
|
\

ault injection selection

[BIP Diagram

T

*LTL Formula:

Parsed Formula:

!

Formula specification Fault Table SMC setting

G{1000} ({bdm_2.count != 2) || F{200} sys_4.reported)

G{1000} ({bdm_2.count!=2) || (F{200} (sys_4.reported)))

|

Specification

1 efava(jar

6 Data ty

15 extern fi

Functio:

1 extern function

="ext—java/bip_lib. jar”)

oo (sre="ext—cpp/wrapper. cpp”, include="stdio. h, stdlib. h, wrapper. hop”)
3 ackage scenario_sme
4 Constants

pes

n prototypes

extern function bool jolRand ()
extern function flof probaRand ()

intf (string)

12 extern functiogfbrintf (string, int)
13 extern functifh print? (string, int, int)
14 extern fungfion printf (string, int, float)

etion printf (string, float)

trace_2tr

et - - e s
o
o T
o,
o
i e
i ?
g
@ - -
.- - °
/ g

d platform

Automated code generation

2
3
3
s
s
7
a

9

=

L1
L2
13
=

pa
e

he tools an

dio.h)

atom type sD(}
data bool halfide
port intemalPort recewel)
expert port NormalPert repart()

place START. RECENE, REPORT

initial to START do { halfife = false: printf{*S0 start\n'): }

on receive from START o RECENE
delayable do { halfife = true: pri

on report from RECENVE to REPORT
delayable
end

do { printi(*50 reportin’; }

v

Intf("50 receivein™];

[BIP Code]

Revise design
Revise design

BIP
Verification

3.2 Design for Dependability and the Models for Validation Purpose

Y
INPUT OUTPUT
4 N\
SYSTEM ARCHITECTURE 4 N\
I Devices and Links€
. J DEPENDABILI
P N TY METRICS
) SYSTEM PROTOCOL
. " Transmission Protocol€) SIMULATION _ J
ENGINE
4 N\
USER WORKFLOW
[Application Prot e
. pplication Protoco) - ~
FAILURE MODE AND EFFECT PERFORMAN
) CE METRICS
FAILURE COUNTERMEASURE] _ J

3.3 Design for Dependability and

The network management system could be a
E2E system without rules: no carefully designed
KPI analysis algorithms and no carefully
designed fault localization algorithms.

the Runtime Assurance System (for ADN)

Untrusted

/| Trusted
! Monitor

AN

y RTA System

A Rule-based system step back to
guard the red line of the system
and make sure no worst case
happen.

L 4

Trusted

Swi

tch p———

Controlled Plant

Recover System [~

This architecture is still controversial

but already meet

the requirements from different stakeholders:

A System engineers would like to accomplish a function in the simplest way

A Reliability engineers would like to make sure no bad thing happen

 the untrusted system be a E2E function;
Fthe RTA system be the safe guard,

[Cloud Core] Object status relationship modeling, supporting complex fault diagnosis and self

-healing

A Based on the ReMAP, define the normal/abnormal status and judgment conditions of system objects, define the fault propagation
relationship between objects, generate the reliability model adaptation package, and instantiate the model based on the live

topology.
1. Design time: ReMAP modeling generates reliability models (adaptation package).

Import the mediation package to the simulation system

2. Run time:
-healing simulation.

3. Runtime: model -based real -time fault detection/diagnosis/self

Output Model This use case is for self-healing with meta failure
A formal package)

ReMAP Platform UC Information
Define UCID and UC

This is for constructing
reliability models Import KPI and alert

Double)
click Single
click
Single state rule
click Single
click
Single action rule
click

State Machine

Define object status

Application

Instantiate objects
Instantiate relations

The meta model

Basic Obiect Class
Basic Relation Class
Basic Status Class

State rules to be defined

xxxxxxxx

xxxxxxxxxxxxxxxx

Action rules

Define state rules and action rules for reliability
management

