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1. Introduction χThe scope
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2. Design for Dependability σ the Methodology

Pub date: 5 February 2024

The third block emphasize the importance 
of dependability in system design with the 
consideration of out -of-nominal conditions 
troughout the system lifecycle.

Risk analysis, mitigation and assessment 
are three key techniques to promote 
system dependability.

Liu, H., Huang, C., Sun, K., Yin, J., Wu, X., Wang, J., ... & Sifakis, J. (2024). Design for dependabilityðState of the 

art and trends. Journal of Systems and Software, 111989.



2. Design for Dependability σ the Models
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3.1 Design for Dependability and the Models for Verification Purpose
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Building a Sequence Diagram Model Fault Definition

Fault injection selection

Specification

Automated code generation Faulty path displayStatus parameter definition

[Data storage] Discovery and verification of the scenario where messages are lost

Reliability modeling based on sequence diagrams and automatic generation of BIP code, accurately identifying the root cause 
of faults and modifying the design.
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3.2 Design for Dependability and the Models for Validation Purpose
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3.3 Design for Dependability and the Runtime Assurance System (for ADN)

This architecture is still controversial but already meet the requirements from different stakeholders:
Å System engineers would like to accomplish a function in the simplest way Ɇthe untrusted system be a E2E function;
Å Reliability engineers would like to make sure no bad thing happen Ɇthe RTA system be the safe guard;

Å The network management system could be a 
E2E system without rules: no carefully designed 
KPI analysis algorithms and no carefully 
designed fault localization algorithms.

Å Rule -based system step back to 
guard the red line of the system 
and make sure no worst case 
happen.



Å Based on the ReMAP, define the normal/abnormal status and judgment conditions of system objects, define the fault propagation 
relationship between objects, generate the reliability model adaptation package, and instantiate the model based on the live net work 
topology. 

2. Run time: Import the mediation package to the simulation system .

3. Run time: model -based real - time fault detection/diagnosis/self -healing simulation.

1. Design time: ReMAP modeling generates reliability models (adaptation package).

[Cloud Core] Object status relationship modeling, supporting complex fault diagnosis and self -healing
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