
Name: Chengqiang Huang (Vincent)

Date: 2024.05.21

Design for Dependability and its Challenges
IEEE ETR Round Table 2024



Contents

1. Introduction

2. Design for Dependability

3. Model Verification, Validation, and Runtime Assurance

4. Existing Challenges



1. Introduction χReliability Technology Lab

2012 Lab

Trustworthy Theory , 
Engineering and Technology 

Lab

RAMS Technology Lab

Reliability Technology Lab

Reliability, Availability, Safety

ICT Reliability (5G/Cloud Computing/ Kunpeng )

AI Reliability

Smart Cars Reliability and Functional Safety

System Reliability

Hardware Reliability Software Reliability

Terminal Devices Reliability (Harmony / Android)



1. Introduction χThe scope

Cf. fortiss :Trustworthy Autonomous/Cognitive Systems

Reliability Availability Maintainability

Safety

Security

Privacy Ethics Fairness

R
A

M
S Tru

stw
o

rth
y



2. Design for Dependability σ the Methodology

Pub date: 5 February 2024

The third block emphasize the importance 
of dependability in system design with the 
consideration of out -of-nominal conditions 
troughout the system lifecycle.

Risk analysis, mitigation and assessment 
are three key techniques to promote 
system dependability.

Liu, H., Huang, C., Sun, K., Yin, J., Wu, X., Wang, J., ... & Sifakis, J. (2024). Design for dependabilityðState of the 

art and trends. Journal of Systems and Software, 111989.



2. Design for Dependability σ the Models

Target 
system

System Model
(qualitative)

Digital Model
(quantitative)

Model Building

Digitalization
Model Analysis

Model Validation and Verification

Å How to digitally express and analyze models?

Å Does the computational model reflect reality correctly?

Data 
confirmation

Recorded in docs, 

ppts, excels, etc.

Recorded in json, 

graph db, xml, code, 

etc.



3.1 Design for Dependability and the Models for Verification Purpose

Code Implementation

System Workflow

System Arch

Concepts and Requirements
Formalized User requirement

Å Whether the requirement is accurate ό
Å Whether the requirement is complete?

Å Whether the arch is reliable?

Å Whether the arch 
satisfies the 
requirement?

Å Whether the workflow/algorithm is correct?
Å Whether the alg 

satisfies the 
requirement?

Å Whether the code is bug free ό

Å Whether the code 
matches the system 
arch and workflow ψ

Administrator

Operation Admin

add

del

modify

add

del

modify

Input A,B,C

Output MAX

End

Start

Yes

Yes Yes

No

No

No

Region

DC 1 DC 2

NF 1 NF 2

Data 1 Data 2

NRF 1 NRF 2



Building a Sequence Diagram Model Fault Definition

Fault injection selection

Specification

Automated code generation Faulty path displayStatus parameter definition

[Data storage] Discovery and verification of the scenario where messages are lost

Reliability modeling based on sequence diagrams and automatic generation of BIP code, accurately identifying the root cause 
of faults and modifying the design.

System Arch SD + Table BIP Diagram BIP Code
BIP 

Verification
Fault Path

Revise design

Revise design

The tools and platform

xxxxxxxxx

xxxxxxxxxxxxx

xxxxxxxxxxxxx



3.2 Design for Dependability and the Models for Validation Purpose

SYSTEM ARCHITECTURE
ЃDevices and LinksЄ

SYSTEM PROTOCOL

ЃTransmission ProtocolЄ

FAILURE MODE AND EFFECT

USER WORKFLOW

ЃApplication ProtocolЄ

DEPENDABILI

TY METRICS

PERFORMAN

CE METRICS

FAILURE COUNTERMEASURE

INPUT OUTPUT

SIMULATION 

ENGINE



3.3 Design for Dependability and the Runtime Assurance System (for ADN)

This architecture is still controversial but already meet the requirements from different stakeholders:
Å System engineers would like to accomplish a function in the simplest way Ɇthe untrusted system be a E2E function;
Å Reliability engineers would like to make sure no bad thing happen Ɇthe RTA system be the safe guard;

Å The network management system could be a 
E2E system without rules: no carefully designed 
KPI analysis algorithms and no carefully 
designed fault localization algorithms.

Å Rule -based system step back to 
guard the red line of the system 
and make sure no worst case 
happen.



Å Based on the ReMAP, define the normal/abnormal status and judgment conditions of system objects, define the fault propagation 
relationship between objects, generate the reliability model adaptation package, and instantiate the model based on the live net work 
topology. 

2. Run time: Import the mediation package to the simulation system .

3. Run time: model -based real - time fault detection/diagnosis/self -healing simulation.

1. Design time: ReMAP modeling generates reliability models (adaptation package).

[Cloud Core] Object status relationship modeling, supporting complex fault diagnosis and self -healing

ReMAP Platform

This is for constructing 

reliability models

Output Model

A formal package)

UC Information

This use case is for self-healing with meta failure

Define UCID and UC
Import KPI and alert

The meta model

Basic Object Class
Basic Relation Class

Basic Status Class

Application State Machine

State rules

Action rules

Instantiate objects
Instantiate relations

Define object status Define state rules and action rules for reliability 

management

Double 

click

Single 

click

Single 

click 

state rule

Single 

click 

action ruleSingle 

click

xxxxxxxxx

xxxxxxxxx xxxxxxxxx xxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxx

State rules to be defined

Action rules to be defined

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxxxxxxxxxxxxx

xxxxxxxxx


