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ABSTRACT 
The continuation of the substitution of fossil fuel generated 
electricity to renewable sources generated electricity is now at a 
critical point. Since these sources have a varying and 
uncontrollable pattern, they cannot be aligned to that of the 
consumption. Besides the expensive storage, the new trend is to 
influence the consumption side with flexible use of electricity 
pushing its pattern to match the green production one. There is 
also a European Framework promoting Smart Energy Appliances, 
appliances that communicate with the Grid regarding the usage 
patterns. 

This introduces the need of modeling and forecasting the end-
user’s consumption and the operation of intelligent agents on the 
consumption side making hundreds of decisions throughout the 
day that affect the usage of energy coming from the Grid. AI is 
the key enabler of these operations, and in our work, which is 
funded by the EU Horizon 2020 program, we use Reinforcement 
Learning, LSTM, RCNN, etc. for precision forecasting usage in 
EV Charging Stations, Households, Radio Base Stations, etc.  

We developed an AI-based intelligent agent to make on-the-fly 
decisions for energy consumption for prosumer households. We 
train the agent to minimize the energy cost of a household by 
controlling the battery given the energy market prices, the energy 
production by the PV, and the user preferences. We do that using 
state-of-the-art Reinforcement Learning algorithms such as Deep 
Inventory Management, Deep Q Networks, and others. The agent 
learns by making actions in an environment, receiving 
rewards/penalties for those actions, and modifying its action 
pattern (policy) accordingly. We use the Gym framework, which 
is offered by OpenAI, to create a simulation environment for our 
agent and for that we will need to model the states, the possible 
actions, and their outcomes. 

The result is a win-win case, with Financial Savings for the 
household and positive impact on Electricity Production Carbon 
Emissions. 

KEYWORDS 
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1 Introduction - Challenge 

Based on the global effort to reduce carbon emissions 
European Nations including Greece have gone a long way to 
convert their Electricity Production from the use of fossil fuels to 
green renewable sources. This conversion varies among the 
developed countries but in many of them has reached more than 
50%. 

The remaining 50% is more challenging to achieve because 
the renewable sources have their own generation pattern that does 
not coincide with the consumption side. There is a great effort 
worldwide to deploy energy storage for this reason, but this has 
many limitations of its own, beyond the extremely high 
investments involved. The European Union has issued directives 
and recommendations to achieve a level of flexibility on the 
consumption profile, aligning it as much as possible to the green 
production one. 

This alignment involves smart energy agents acting from the 
consumer side managing the production (if any), the local storage 
and the actual consumption of the new smart energy appliances 
that emerge. AI provides powerful mechanisms that can help at 
this mechanism, contributing accurate forecasts and real time 
decision making targeted to optimize carbon footprint of the 
energy consumed by the user, such as a EV owner, a household, a 
corporate building etc.  

1.1 Previous Work – AI4CS 
Funded by the Horizon 2020 Interconnect project, we have 

created an AI powered solution that helps EV owners to find the 
place and the time to charge their EV, targeting both the user 
customer experience and the usage of Green Electricity and the 
reduction of stress on the Grid. 

 
The Interconnect project has developed SIF, a Semantics 

Interoperability Framework that enables the smooth information 
exchange regarding the electricity production, consumption, 
carbon intensity etc. of European Energy Grids. Our platform 
AI4CS (AI for Charging Stations) from one side used AI to 
forecast availability of Charging points and combined it with 
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information from SIF to produce the optimal suggestions for the 
place and the time of the charging.  

. 
 

1.2 Current Electricity Market trends – Storage 
Opportunity  

The electricity production outlook [20], [24] indicates the high 
percentage of green electricity, driven by the continuously 
increasing production from solar and wind power plants. 
Current studies as the one recently published by Aurora Energy 
Research, [17], show that there is a high potential in the usage of 
energy storage, since it can help increase the usage of cheaper 
green electricity by deferring the consumption from the grid from 
expensive carbon intense timeslots to greener ones. 
The study of the University of Bonn [21] shows clearly the 
disparity between the solar/wind production profile and the 
consumption of a typical household. 
This environment shows an opportunity to bring AI as the 
technology to maximize the benefits of energy storage 
introduction by making the right decisions in real-time switching 
between the usage of grid and stored electricity, charging and 
discharging. 

2 AI for Smart Buildings 
2.1    LTSM timeseries forecasting    

      The immense capabilities of neural networks to extract 
complex patterns from given data intuitively seems a great tool to 
use for modeling the charging activity in the EV charging 
networks. LSTMs are renowned for applications of handling 
multivariate time series [6] and in general cases where the data 
intrinsically show some temporal dependencies. LSTM belongs to 
the category of Recurrent neural networks and has been successful 
in time series forecast, especially when seasonality and cycles 
need to be accounted for. We have leveraged previous works that 
employ different types of recurrent neural networks (LSTMs, 
Random Neural Networks, GRUs) for anomaly detection in IoT 
systems via time series forecasting for the problem of 
congestion/utilisation forecast 

The Charging Station Occupancy Prediction is getting more 
and more attention as predicting the occupancy of public EV 
charging stations is crucial for developing smart charging 
strategies. It helps reduce inconvenience for both EV operators 
and users. 

Long Short-Term Memory (LSTM) neural networks have 
been successfully applied to predict energy consumption and 
occupancy patterns at electric vehicle (EV) charging stations. 
Let’s delve into how LSTM models are used for this purpose: 

Data Collection: Historical data on charging station 
occupancy is collected. This data typically includes information 
such as recorded charging sessions including timestamps, current 
occupancy levels, day of the week, and any other relevant 
features.  

Data Preprocessing: The collected data is preprocessed to 
make it suitable for training the LSTM model. This may involve 
steps such as normalization, handling missing values, and feature 
engineering to extract meaningful features. 

Sequence Formation: The preprocessed data is divided into 
sequences of fixed length. Each sequence contains historical 

information on charging station occupancy and other relevant 
features. The target variable for each sequence is the occupancy 
level at the next time step. 

Model Training: The LSTM model is trained using the 
prepared sequences of data. During training, the model learns to 
capture temporal patterns and dependencies in the data, enabling it 
to make predictions about future occupancy levels based on past 
observations. 

Validation and Testing: The trained LSTM model is validated 
using a separate validation dataset to ensure that it generalizes 
well to unseen data. Additionally, the model's performance is 
evaluated on a test dataset to assess its predictive accuracy. 

Prediction: Once the LSTM model has been trained and 
validated, it can be used to make predictions about future charging 
station occupancy levels. Given historical data as input, the model 
generates predictions for future occupancy levels at each time 
step. 

Monitoring and Adaptation: The LSTM model's predictions 
are monitored in real-time, and the model may be retrained 
periodically using updated data to improve its accuracy and adapt 
to changing patterns in occupancy.  

Long Short-Term Memory (LSTM) networks, as a special 
structure of Recurrent Neural Networks, have proven to be stable 
and powerful for modeling long-range dependencies in general-
purpose sequence modeling ([9]-[11]). In LSTMs, each node in 
the hidden layer is replaced by a memory cell, instead of a single 
neuron [9]. The structure of a single memory cell is depicted in 
the figure below.  

 

 
 

Figure 1: Structure of an LSTM Memory Cell 
The memory cell contains the following components: the 

forget gate, the input node, the input gate, and the output gate. 
Each component applies a non-linear relation on the inner product 
between the input vectors and respective weights (altered 
iteratively through a training process). Some of the components 
have the sigmoid function, σ(∙)  and others the  tanh(∙) 

As discussed in [6] Recurrent neural networks and LSTMs in 
particular, have shown great success in predicting time series 
online.  Especially in [9] LSTMs have been used to tested, 
particularly on predicting traffic flows. 

The goal of the forget gate is to decide what information 
should be discarded out of the memory cell [10]. The output, 
denoted as f(n) ranges between 0 and 1, according to the sigmoid 
activation function. The forget gate learns whether a previous or 
future vector state is necessary for the estimation of the current 



 

value state. The input node performs the same operation with that 
of a hidden neuron of a typical recurrent regression model. The 
goal of this node is to estimate the way in which each latent state 
variable contributes to the final model.   

 As far as the input gate is concerned, its role is to regulate 
whether the respective hidden state is sufficiently important. It has 
the sigmoid function, therefore its response ranges between 0 and 
1. This gate addresses problems related to the vanishing of the 
gradient slope of a tanh(∙) operator. Finally, the output gate 
regulates whether the response of the current memory cell is 
sufficiently significant to contribute to the next cell. Therefore, 
this gate actually models the long-range dependency together with 
the forget gate.   

The recurrent nature of the LSTM presents many intricacies in 
terms of the iterative training process for adjusting the weights of 
the multiple gates. The adaptation of the backpropagation 
algorithm for accommodating the LSTM training is called 
Backpropagation Through Time [11]. The backpropagation 
variation for training recurrent neural network architectures 
presents the problem of vanishing or exploding gradients. So the 
number of time steps that the gradient is propagated is another 
hyperparameter of training that needs to be monitored. This 
adaptation is called truncated backpropagation through time and is 
thoroughly explained in [12]. 

 

 
Figure 1: LSTM Architecture 

 

2.2     Deep Reinforcement Learning Agent   
Deep Reinforcement Learning (DRL) is a subfield of machine 

learning that combines reinforcement learning (RL) with deep 
learning techniques. It's particularly powerful for solving complex 
decision-making problems in environments with high-dimensional 
state and action spaces, such as playing video games, robotic 
control, and autonomous driving and in our case household energy 
management. 

 

  
Figure 2: Deep Reinforcement Learning architecture. 
 
A household energy management agent using reinforcement 
learning (RL) is an intelligent system designed to optimize energy 

consumption and generation within a home environment. Here's 
how such an agent might operate: 
 
Agent: The agent, often implemented as a software program or 
embedded system, is responsible for making decisions related to 
energy management within the household. It interacts with 
various devices, appliances, and energy sources to achieve 
specific goals, such as minimizing electricity bills, reducing 
carbon footprint, or ensuring uninterrupted power supply. 
Environment: The environment represents the household energy 
system, including energy-consuming devices (e.g., lights, HVAC 
systems, appliances), energy storage systems (e.g., batteries), 
renewable energy sources (e.g., solar panels, wind turbines), and 
the electrical grid. The environment provides feedback to the 
agent based on its actions and the state of the household energy 
system. 
State: At each time step, the environment is in a particular state, 
which includes information about energy demand, energy prices, 
weather conditions, battery state of charge, and the status of 
appliances. The agent perceives this state and decides on actions 
based on it. 
Action: The agent selects actions that affect energy consumption 
and generation within the household. Actions may include 
scheduling appliance usage, adjusting thermostat settings, 
controlling the charging/discharging of energy storage systems, 
and managing interactions with the electrical grid (e.g., buying or 
selling electricity). 
Reward: After taking an action in a specific state, the agent 
receives feedback from the environment in the form of a reward. 
The reward reflects how well the action aligns with the agent's 
objectives, such as minimizing energy costs, maximizing self-
consumption of renewable energy, or maintaining comfort levels 
within the home. 
Policy: The agent follows a policy, which defines its strategy for 
selecting actions based on the current state. The goal of the agent 
is to learn an optimal policy that maximizes cumulative rewards 
over time while satisfying constraints such as comfort preferences 
and device operation requirements. 
Exploration vs. Exploitation: The agent must balance exploration 
(trying new energy management strategies to discover their 
effectiveness) and exploitation (leveraging known effective 
strategies to maximize short-term rewards) to achieve optimal 
performance. 
Learning Algorithm: The agent learns to improve its decision-
making over time using an RL learning algorithm. This could 
include algorithms like Q-learning, Deep Q-Networks (DQN), 
Policy Gradient methods, or Actor-Critic methods, tailored to the 
specifics of household energy management. 
Training: During training, the agent interacts with the 
environment over multiple episodes or iterations. It adjusts its 
policy based on the received rewards and updates its internal 
parameters to improve performance. Training might involve 
simulations based on historical data or experiments in a real 
household environment. 
Evaluation: Once trained, the agent's performance is evaluated on 
unseen data or in real-world scenarios to assess its effectiveness in 



  
 

 
 

optimizing household energy management and achieving the 
desired objectives, such as cost reduction, energy efficiency 
improvement, or environmental impact reduction. 
By employing reinforcement learning techniques, household 
energy management agents can adapt to the dynamic nature of 
energy consumption and generation within homes, leading to 
more efficient energy usage, cost savings, and reduced 
environmental impact. 

2.3 Simulation Environment 
In reinforcement learning, the agent learns by making actions in 
an environment, receiving rewards/penalties for those actions and 
modifying its action pattern (policy) accordingly. One could either 
use the real environment (the real household and the energy 
markets) or simulated environment. In this project, a simulation 
environment was built, using the OpenAI Gym as a framework. 

 

 
Figure 4: The simulation environment is a digital representation 
of the real physical environment that is used for training the 
reinforcement learning agent. 

Developing the simulation environment for the energy decision 
agent involved the following steps: 

• Representing the current situation (the state) of the 
environment numerically. The state representation needs 
to involve all of the information that our agent needs for 
training. 

• Representing the possible actions (things that our agent 
can make with our battery) numerically. Representing 
and updating the current state of the home battery. 

• Developing a logic of what it means to make a specific 
action in the environment. In other words, expressing 
what would happen with the household, battery and the 
energy cost when specific action is carried out by the 
agent. 

3 System Architecture 
The basic premise of the methodology for the Household 

Energy Management assistant is to model the consumption pattern 
for each household using time series data of the daily activity for 
each basic electric devices that contribute to the overall daily 
energy consumption. In that fashion we are going to take into 
account the preferences of the users. The collection of this kind of 

data has to be done through energy smart meters that can precisely 
measure the consumption with timestamps. The modeling of each 
household will be done by feeding the collected data into our 
already tested LSTM-based time series forecasting algorithm 
which was mentioned previously.  

Next step is to design the proper simulation environment for 
our Deep Reinforcement Learning agent. There will be 3 versions 
of simulation environments as there are 3 different household 
setups:  

a) a household that produces, stores and consumes energy 
(PV & battery) 

b) a household that produces and consumes energy (PV) 
c) a household that consumes energy 

 
Each setup a completely different set of states, actions and logic 
that the agent has to follow in order to learn the best policy for the 
household energy management. Of course, the consumption 
pattern for each household that has been created will be inside the 
logic that the RL agent will follow. 

  
Figure 3: Workflow of the proposed method. 
 

LSTM architecture: 

The LSTM neural network architecture is comprised by one 
input layer, one output layer and two hidden layers with 50 
neurons each (dense formulation). The Loss function used for 
adapting the weights is the Mean Square Error (MSE) which is the 
most typical loss function used for training in regression problems 
[14] and the optimization scheme is the ADAM optimizer [15]. 
The Backpropagation Through Time (BPTT) was stopped at three 
consecutive steps going back so the truncated version of the 
Backpropagation scheme was implemented for avoiding vanishing 
gradients. 

4 Performance Evaluation 
4.1 AI4CS Pilot   
 

The LSTM-based Charging Station Occupancy Prediction was 
tested in pilot which was conducted in Collaboration with 
Hrvatski Telekom [25], [26]. Hrvatski Telekom operates the 
largest EV charging station network in Croatia and provided us 
with rich historical data on the charging sessions for each 
charging station for the last 5 years. During the pilot phase we had 
daily access to new data to fine tune our model. Due to our 
participation in Interconnect Horizon Project, we had also access 
to energy grid information coming from the Interoperable 
Recommender which is an innovative tool that has direct access to 
energy grid information related to the energy mix produced 
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Decision 
(based on sampling 

probability distribution 
of possible actions)

Reward ObservationModel Update

Exploration-
Exploitation Tradeoff

Deep Reinforcement 
Learning Algorithm  



 

(Fossil fuel or renewable energy) and the stress of the energy grid 
in an hourly basis. The Interoperable Recommender provides a 
signal on request about promoting consumption when there is 
enough renewable energy production, and the grid is not stressed 
or avoiding consumption when the energy is not green and the 
grid is stressed. For the pilot in Croatia, we built a mobile 
application for the benefit of EV owners which takes into 
consideration their preferred time and driving distance they are 
willing to drive and our application makes suggestions on where 
to go to find a charger that is more likely to be unoccupied and the 
energy coming from the grid is greener. The application will also 
make suggestions that might be time shifted for one or two hours 
from the selected time if the grid is stressed and the customer is 
not likely to find a close charger available. Hrvatski Telekom has 
shown interest in our application, and we are in close contact with 
them for integrating some of the functionalities to their app’s 
backend. 
 

4.2. AI4CS Pilot Results 
 
The pilot in Collaboration with Hrvatski Telekom had a 

duration of more than a month and the outcome was remarkable. 
In the pilot phase 112 HT subscribers participated as Friendly 
Users and we collected all the information from their interactions 
with the app such as: 

• Engagement of consumers and usage of app 
• Collection of App Logs – Calculation of KPIs 
• Collection of User Feedback for Experience Evaluation 

 
The application got a User Satisfaction score of 3.8 out of 5 and a 
NPS score of 7.5/10 which means that users were likely to suggest 
the app to others. The app also contributed in the grid 
decompression since it successfully suggested alternative 
timeslots when needed and also increased the green electricity 
usage.  
 
Table 1: AI4CS Pilot Key Results 

   
Below you can see how many times the app proposed a different 
timeslot and the EV owner accepted it. And the pie chart of the 
user satisfaction scoring. 

 
 

 
Figure 6: Shifting the time of EV charging to avoid Grid Load       
based on Interoperable Recommender Insights 
 

 
Figure 7: AI4CS APP – User Satisfaction Scoring 

  
 We have conducted experiments to: 1) validate the efficacy 

of the deep learning predictive model idea for Charging Station 
Occupancy Prediction and 2) compare the two architectures of AI  
in terms of accuracy, one is the LSTM architecture that we 
propose and the other is a classical ARIMA approach. 

We train each of the formulations of AI networks (always as a 
regressor) with the same dataset that has been derived from the 
preprocessing of the historical data in charging sessions that 
Hrvatski Telekom provided us. 

The results, as expected, shown a superior performance of the 
LSTM architecture compared to the classic ARIMA machine 
learning approach. We present the results 

 
Table 1: Performance metrics for AI predictive models. The 

proposed LSTM approach outperforms the ARIMA model. 
Table 2: Comparative Performance of the model 

Neural Network 
architecture Train MSE Test MSE 

LSTM 
0.0224 

 
0.334 

ARIMA 10.55 13.89 

 
5 Conclusion 

In this paper we propose that a cooperation of two deep neural 
networks, one for time series forecasting and one for making 
recommendations on the household energy usage, plus 
information coming from the grid (related to the hourly energy 
mix and the stress level) can be used to create a smart household 



  
 

 
 

energy management app. managing energy consumption in a 
household is crucial for several reasons. First, Efficient 
energy use can lead to lower utility bills, saving money for 
the household budget. By being mindful of energy 
consumption, individuals can reduce wasted energy and 
optimize usage, thus reducing their overall expenses. 
Additionally, Energy production often involves the burning 
of fossil fuels, which releases greenhouse gases into the 
atmosphere. By managing energy consumption in a smart 
way like promoting more consumption when there is plenty 
of green energy production, households can decrease their 
carbon footprint and contribute to mitigating climate 
change and environmental degradation. Finally, it promotes 
a stable and reliable Grid. During peak demand periods, 
strain on the electrical grid can lead to blackouts or 
brownouts. By managing energy consumption, households 
can help alleviate pressure on the grid, contributing to 
overall grid stability and reliability. 
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