

Al for Energy Sustainability

Promoting Green Energy Through Al

Kostas Vlachodimitropoulos, PhD George Vlachodimitropoulos, MSc, MBA

Local AI

Local Al

Startup Overview

Our Mission:

❖ Promote Sustainability with the power of AI

Our Background:

motivated Engineers with MSc and PhD studies in the field of Artificial Intelligence

Our Experience:

Awarded and finalized EU funded projects in the field of Sustainable AI

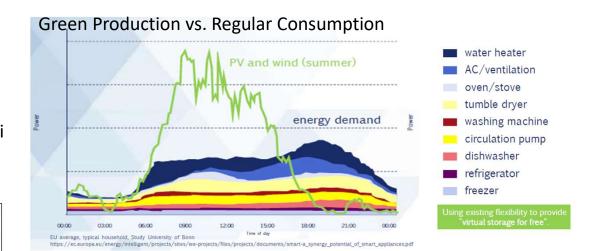
Field	Action	Readiness	Support
Electric Mobility	EV charging network roll- out optimization	TRL7 to TRL9	CNROpt project (funded by i-nergy)
EVs & Energy Consumption	Smart EV charging session planning	TRL7 to TRL9	AI4CS project (funded by Interconnect)
Forest Surveillance	Al based forest health/thickness assessment by drone video	TRL7-TRL9	AI4FS project (funded by ImagineB5G)

Related Work:

❖ AI4CS Project – AI powered EV charging recommendations optimizing AVG waiting time and promoting grid load balance at the same time

Our Presence:

- ❖ Member of Smart Attica DIH
- ❖ Supporting the participation of Kalamata in the NetZeroCities EU Mission

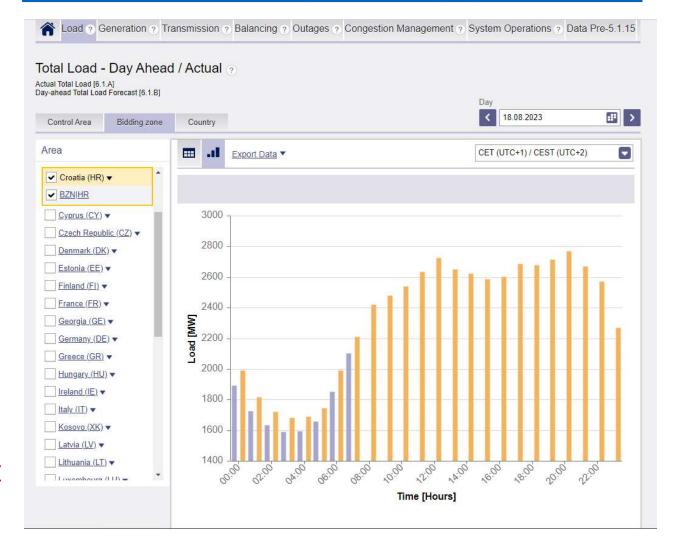


Challenge: After Reaching 50% Green Electricity the next 50% will require smart real-time energy management from the consumer side

- -87% generation from lignite (vs. 2005)
- 🛂 2x solar + wind capacity vs. 2019
- \mathbf{V} 48% of power from wind + solar (2M 2024)
- 4th in wind + solar penetration in the EU (2023)
- 2x investment in grids (vs. 2015-18)
- 11.3% EV market share (vs. 0.4% in 2019)
- 250 new electric buses for Athens + Thessaloniki
 Source: Delphi Economic Forum April 2024

Greece: Electricity Supply by Source (Interconnected System) Renewables Natural gas Lignite Hydro Net Imports 25 20 20 2010 2023 2010 2023 2010 2023 2010 2023 2010 2023 2010 2023 2010 2023 2010 2023

Source: ADMIE (IPTO) Monthly Energy Reports. Excludes a small amount of oil-fired generation.



ENTSO-E transparency platform

Data Source

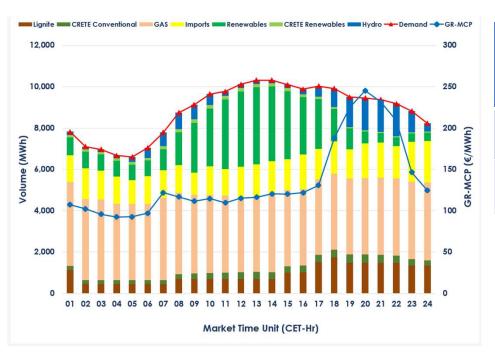
Price & Load Prediction

Already
Established
Access
Via
InterConnect



Electricity Maps

Data Source


Green Production

Already
Established
Access
Via
InterConnect

Opportunity: Equip Municipal Buildings with battery storage that can temporarily substitute electricity supply at expensive timeslots

Daily Production – Consumption – Price

Peak price@20:00 is >2x price@04:00

Peak value coincides with minimum Renewables in the Energy Mix

Source: Greek Energy Exchange – enex https://www.enexgroup.gr/

Modelling Electricity Bill Savings Potential in Buildings

Greek Market Attractiveness: >9% Internal Rate of Return* Ranked 4th best in Europe

Standalone Electric Energy Storage System (2h Capacity): 9%-12% IRR

Legal Framework: N129/4.7.2022

Combined PV & 2h EESS	Savings
IRR	>12%
CAPEX	-12% vs. standalone PV
OPEX	-10% vs. standalone PV

Legal Framework: ΦΕΚ 4685/2020

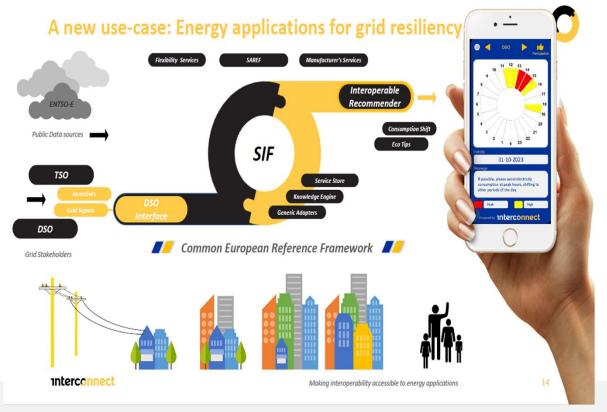
Renewable Energy production 12GW@2024 \Rightarrow 20.6GW @ 2030 Flexibility in the Consumption Side is a Must!

Energy Performance Rate: 86%, Response time <1s

AI4CS

Al for Charging Stations

Kostas Vlachodimitropoulos Local AI

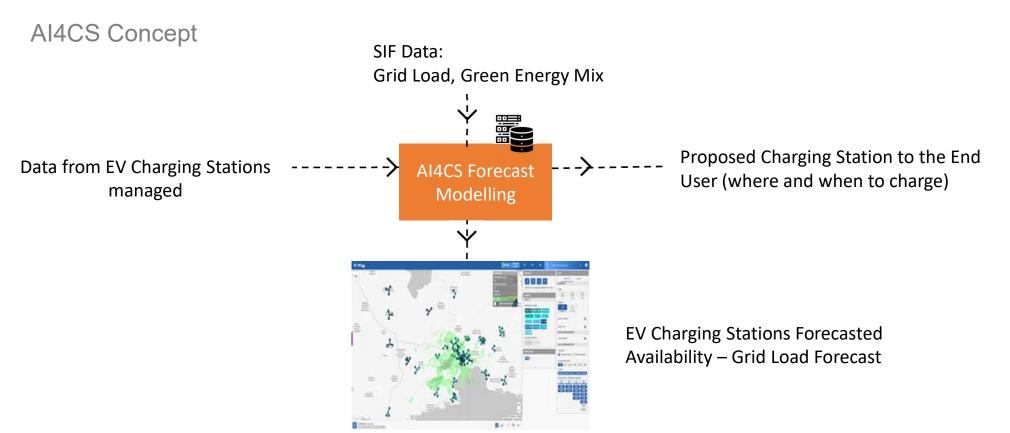

Powered by: https://interconnectproject.eu/

Local AI Experience in AI for Energy

Connecting European Energy Producers and Consumers for promoting Energy Sustainability

Our AI for Charging Stations app

Access and knowledge on Prices-Mix-Loads for EU Countries, Intelligent Guidance for EV owners to charge.


Implementation of the AI4CS Use Case for EV Charging Stations piloted Jan-Feb 2024 in Hrvatski Telekom (Deutsche Telecom Group)

More Info at https://interconnectproject.eu/wp-content/uploads/2023/12/Booklet.pdf

Al powered GeoAnalytics & Al Timeseries Forecasting leading to Optimal Suggestions to EV owners for

- √ the best Customer Experience
- √ empowerment of EV adoption
- ✓ peak Grid Load avoidance
- ✓ Use of Greener Electricity

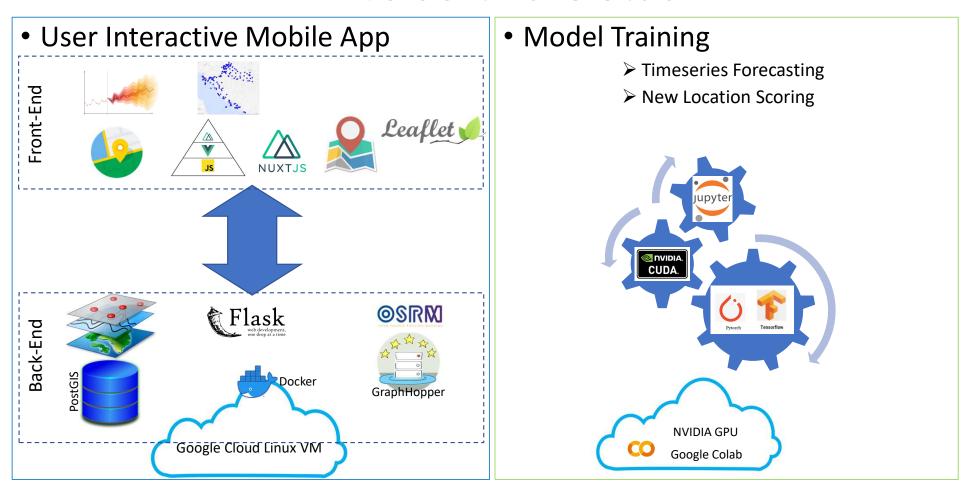
Planning Tool – Forecasting Utilisation

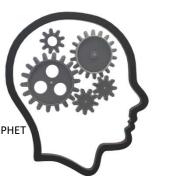
Current State of the Art Forecasting

The LSTM and Transformers AI Timeseries Forecasting Models currently perform excellent providing precise forecasts, outperforming the baseline ARIMA model:

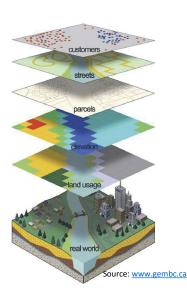
Charging Station Forecast -ARIMA	Charging Station Forecast - LSTM	
Train MSE: 10.55	Train MSE: 0.0224	
Test MSE: 13.89	Test MSE: 0.334	

Source: Github CNROpt Repo

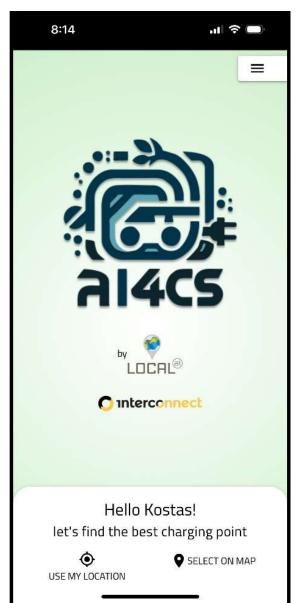

https://github.com/local-ai-gr/CNROpt/blob/main/Forecasting%20with%20location%20included%20final%20model.ipynb

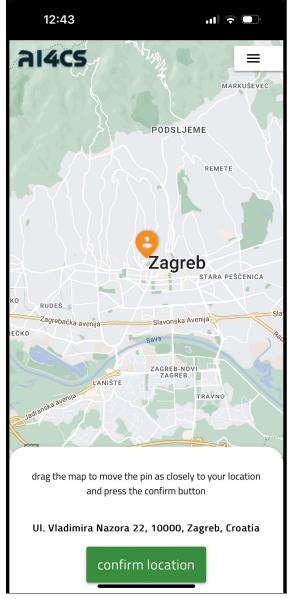

AI4CS Software Stack

Tested a set of laboratory Al algorithms


- > Deep Reinforcement Learning
- > LSTM Transformers LLMs for Timeseries prediction
- ML techniques tailored for spatiotemporal time series forecasting PROPHET models, Transformers and Recurrent Neural Networks

Model into Layers

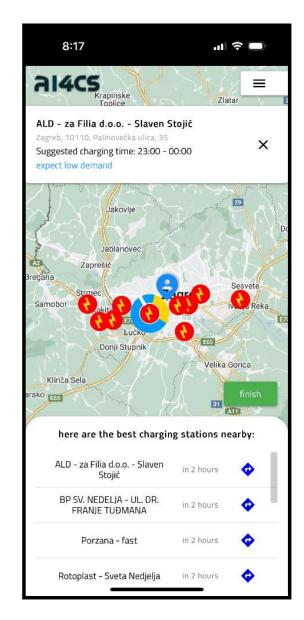


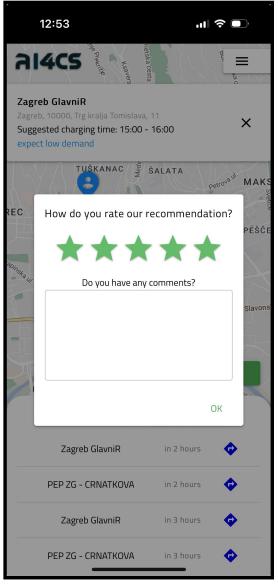

Deployed on cloud infrastructure, container based, using many different containers, one for each micro-service, managed by Kubernetes, enabling fast scalability in the production phase of our operation.

Web App Landing Screen

The user is asked for a location (or enable the use of their location)

AI4CS App Demo Video





Suggestion to the User

The optimal CS within x km driving distance is displayed along with its name and distance and driving directions to it. The suggested time is close to the desired one but may be ±2 hours from the desired time for avoiding peak grid load and/or getting greener electricity

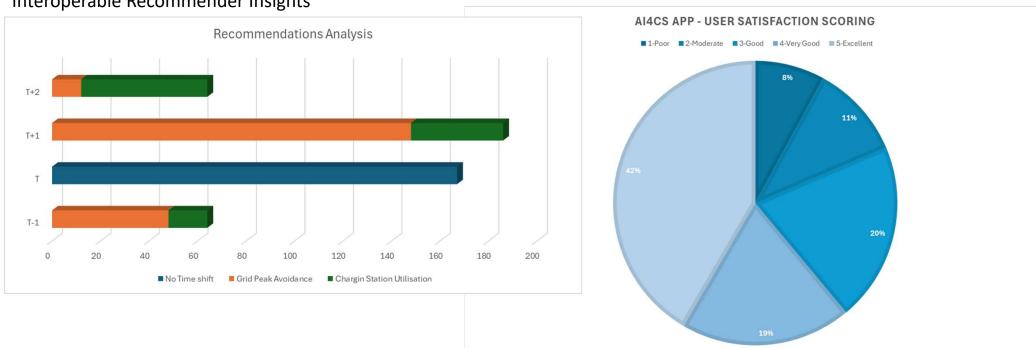
Pilot - Demonstration in the field

Pilot in Collaboration with Hrvatski Telekom 16/1-20/2/2024

- Addressed 112 Friendly Users from HT subscribers
- Engagement of consumers and usage of app
- Collection of App Logs Calculation of KPIs
- Collection of User Feedback for Experience Evaluation
- Preparation of Final Evaluation (Consumers/Grid/CO₂ emissions)
- HT: Potential Price Motivation for avoiding peaks

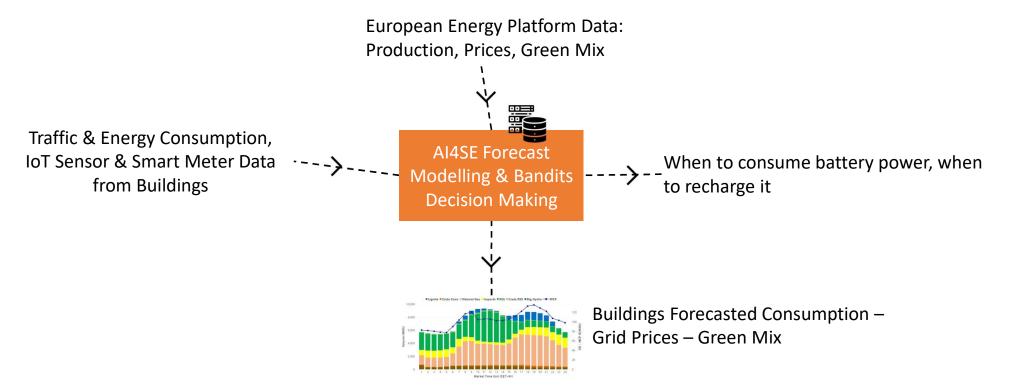
AI4CS Pilot Key Results

Demonstration Project Key Performance Indicators				
Users Engagement	112 users	480 Recommendations		
User Satisfaction	MOS Score 3.8	1:bad, 2:poor, 3:OK, 4:very good, 5:excellent		
NPS score	7.5	1:Not Recommend at all – 10:Strongly Recommend		
Avoidance of Grid Peak Load	130 Recommendations to avoid Grid Peak Load (based on Interoperable Recommender)	2.1% Contribution Reduction		
CO ₂ emissions reduction	Increase of Green Electricity Usage	2% Increase (est.)		



AI4CS Pilot Key Results - Analysis

Shifting the time of EV charging to avoid Grid Load based on Interoperable Recommender Insights



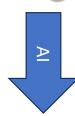
Al powered Analytics, Al Timeseries Forecasting and Neural Bandits Algorithms leading to Optimal Suggestions to Municipality Stakeholders for

- ✓ Energy Bill Savings
- ✓ Use of Greener Electricity

- Deep Reinforcement Learning techniques tailored for time series forecasting models, Transformers and Recurrent Neural Networks.
- Neural Contextual Bandits Algorithms for decision-making leveraging Neural Nets.
- ➤ Neural Network used to capture complex patterns and dependencies in the data the relationship between Context and Reward.

Receive Contextual

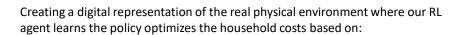
Exploration-Exploitation Tradeoff


Deep Reinforcement Learning Algorithm

Model Update

Reward Observation

Model Building Energy Consumption and Grid Energy characteristics using Neural Nets


Find the best switch on & off times from the Grid, Maximizing savings

Source: https://towardsdatascience.com/contextual-bandits-and-reinforcement-learning-6bdfeaece72a

AI4SB Technologies

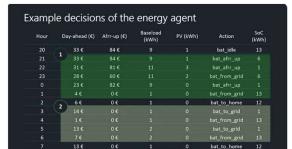
Deep Learning AI models

Energy decision making powered by Deep Reinforcement Learning

Simulation

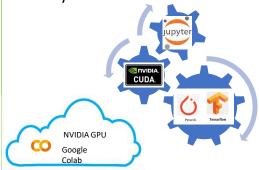
environment

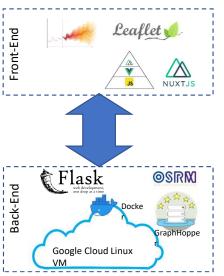
Gymnasium

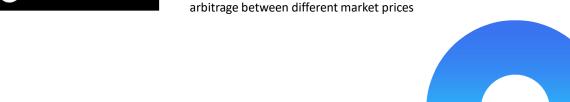

OpenAl

Battery specifications (if applicable)

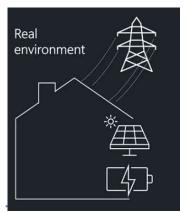
Forecasted hourly energy market

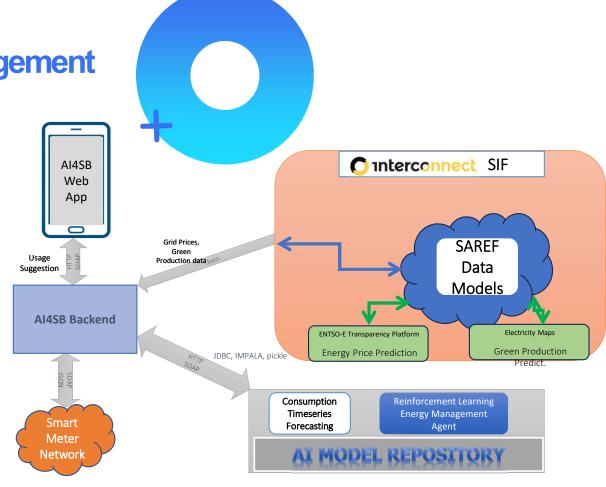

- Baseload of the household
- User preferences


Example - Our agent can carry out the arbitrage between different market prices


- ➤ Neural Bandits
- Deep Inventory Management
- Deep Q Networks
- ➤ Policy Gradient Methods

User Interactive Mobile App





Al for Smart Buildings

Household Energy Management



Al 4Smart Buildings: a Value-Added Service

Bringing Energy Cost Savings & Reducing CO₂ Footprint

Enabling the transition towards the "Smart Energy Management"

- End User Managing the "Orange" Energy Subscription
- Leveraging new Opportunities Production &Storage
- Enabling the Prosumer Model
- ❖ AI is the key enabler to unlock its full potential
- ❖ Futureproof for "Smart Energy Appliances"

TEAM

Konstantinos Vlachodimitropoulos Team Leader

George Vlachodimitropoulos Data Scientist

Spilios Evmorfos

Evgenia Chroni

Data Scientist

Data Engineer

PhD, Electrical & Computer Engineering, NTUA, Greece

MSc Electrical &
Computer Engineering
Rutgers
University NJ

PhD Candidate in Electrical & Computer Engineering Rutgers University NJ

PhD Candidate in Computer Science Rutgers University NJ

Thank you!

Enquiries:

kvlahodim@local-ai.gr

Play Video

